负责任的AI被广泛认为是我们时代最大的科学挑战之一,也是释放AI市场并增加采用率的关键。为了应对负责任的AI挑战,最近已经发布了许多AI伦理原则框架,AI系统应该符合这些框架。但是,没有进一步的最佳实践指导,从业者除了真实性之外没有什么。同样,在算法级别而不是系统级的算法上进行了重大努力,主要集中于数学无关的道德原则(例如隐私和公平)的一部分。然而,道德问题在开发生命周期的任何步骤中都可能发生,从而超过AI算法和模型以外的系统的许多AI,非AI和数据组件。为了从系统的角度操作负责任的AI,在本文中,我们采用了一种面向模式的方法,并根据系统的多媒体文献综述(MLR)的结果提出了负责任的AI模式目录。与其呆在道德原则层面或算法层面上,我们专注于AI系统利益相关者可以在实践中采取的模式,以确保开发的AI系统在整个治理和工程生命周期中负责。负责的AI模式编目将模式分为三组:多层次治理模式,可信赖的过程模式和负责任的逐设计产品模式。这些模式为利益相关者实施负责任的AI提供了系统性和可行的指导。
translated by 谷歌翻译
我们定期考虑在实践中回答反事实问题,例如“糖尿病患者会选择另一种药物,会更好吗?”。观察性研究在回答此类问题的显着性上增长,因为它们的广泛积累和比随机对照试验(RCT)比较容易获得的。最近,一些作品将表示和域的适应性引入了反事实推断。但是,大多数目前的作品都集中在二进制治疗的设置上。他们都没有认为不同治疗的样本量不平衡,尤其是由于固有的用户偏好,某些治疗组中的数据示例相对有限。在本文中,我们为反事实推断设计了一种新的算法框架,从元学习来估算单个治疗效果(元地铁)以填补上述研究空白,尤其是考虑多种不平衡治疗方法。具体而言,我们将反事实推断的治疗组之间的数据发作视为元学习任务。我们从一组有足够样品的源治疗组中训练一个元学习者,并通过梯度下降进行梯度下降,而在目标治疗中样本有限。此外,我们引入了两个互补的损失。一个是多种来源治疗的监督损失。提出了与各个治疗组之间潜在分布对齐的另一个损失,以减少差异。我们在两个现实世界数据集上执行实验,以评估推理准确性和概括能力。实验结果表明,模型元地铁匹配/跑赢大的方法。
translated by 谷歌翻译
尽管AI具有改变社会的巨大潜力,但人们对其行为能力和负责任地做出决定的能力存在严重的关注。最近发布了许多负责AI的道德法规,原则和准则。但是,这些原则是高级且难以实施的。同时,从算法的角度来看,已经将很多努力投入到负责人的AI中,但是它们仅限于一小部分伦理原则,可用于数学分析。负责的人工智能问题超出了数据和算法,并且经常在系统级交叉处,许多系统组件和整个软件工程生命周期。基于系统文献综述的结果,本文将一个缺失的元素确定为系统级指导 - 如何设计负责任的AI系统的体系结构。我们提供了一个设计模式的摘要,可以将其嵌入AI系统中作为产品功能,以促进负责任的设计。
translated by 谷歌翻译
虽然人工智能(AI)正在解决现实世界的挑战和转型行业,但对其表现和以负责任的方式做出决定存在严重担忧。最近各国政府,组织和企业发布了许多AI伦理原则和负责任的原则和指南。但是,这些AI伦理原则和指南通常是高级别的,并且不提供关于如何设计和开发负责任的AI系统的具体指导。为了解决这种缺点,我们首先提出了一个实证研究,我们采访了21名科学家和工程师,了解从业者对AI伦理原则及其实施的看法。然后,我们提出了一个模板,使AI道德原则能够以具体模式的形式进行操作,并建议使用新创建的模板的模式列表。这些模式提供了具体的,操作化指导,促进了负责任AI系统的发展。
translated by 谷歌翻译
我们研究了随机时间变化图的分散在线正规化线性回归算法。在每个时间步骤中,每个节点都运行一个在线估计算法,该算法由创新术语组成,该算法处理其自己的新测量,共识术语以其自身的估计和其邻居的加权量和具有添加性和乘法性噪声的加权总和,以防止正式化术语-配件。不需要回归矩阵和图形满足特殊的统计假设,例如相互独立性,时空独立性或平稳性。我们开发了估计误差的非负性超智能不平等,并证明所有节点的估计几乎可以肯定地收敛到未知的真实参数矢量,如果算法获得,图形和回归矩阵共同满足了样品路径路径时空时空的激发条件的持久性。特别是,如果图形均匀地有条件地共同连接并有条件平衡,并且所有节点的回归模型在有条件的时空上共同观察到,则该条件可以通过选择适当的算法增益来获得适当的算法增益,并且在均匀的算法中均匀地共同观察到,在均值中,算法在卑鄙的正方形中且几乎是在卑鄙的。此外,我们证明了遗憾的上限$ \ MATHCAL O(t^{1- \ tau} \ ln T)$,其中$ \ tau \ in(0.5,1)$是一个不变的,取决于算法的增长。
translated by 谷歌翻译
本文提出了一种以直接非凸起的方式解决社区检测和组同步问题的广义电力方法(GPM)。在随机组块模型(SGBM)下,理论分析表明该算法能够在$ O(n \ log ^ 2n)$ time中完全恢复地面真相,急剧优化了SEMIDEfinite编程(SDP)的基准方法O(n ^ {3.5})$时间。此外,参数的下限作为精确恢复GPM的必要条件。新界违反了随机块模型(SBM)下纯社区检测的信息 - 理论阈值,从而展示了我们在连续执行两个任务的琐碎的两级方法上的同时优化算法的优越性。我们还对GPM和SDP进行了数值实验,以证据和补充我们的理论分析。
translated by 谷歌翻译
学习捕获特征关系有效,有效地是现代推荐系统的点击率(CTR)预测的必要条件。大多数现有的CTR预测方法通过繁琐的手动设计的低阶交互或通过不灵活和低效的高阶交互来模型这样的关系,这两者都需要额外的DNN模块进行隐式交互建模。在本文中,我们提出了一种新颖的插件操作,动态参数化操作(DPO),以便明智地学习显式和隐式交互实例。我们认为DPO进入DNN模块和注意力模块可以分别有利于CTR预测中的两个主要任务,增强了基于特征的建模和改进用户行为建模的适应性与实例 - 方向性。我们的动态参数化网络在公共数据集和现实世界生产数据集的离线实验中显着优于最先进的方法,以及在线A / B测试。此外,建议的动态参数化网络已经在世界上最大的电子商务公司之一的排名系统中部署,服务于数亿个活跃用户的主要流量。
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
In this chapter, we review and discuss the transformation of AI technology in HCI/UX work and assess how AI technology will change how we do the work. We first discuss how AI can be used to enhance the result of user research and design evaluation. We then discuss how AI technology can be used to enhance HCI/UX design. Finally, we discuss how AI-enabled capabilities can improve UX when users interact with computing systems, applications, and services.
translated by 谷歌翻译
As one of the most important psychic stress reactions, micro-expressions (MEs), are spontaneous and transient facial expressions that can reveal the genuine emotions of human beings. Thus, recognizing MEs (MER) automatically is becoming increasingly crucial in the field of affective computing, and provides essential technical support in lie detection, psychological analysis and other areas. However, the lack of abundant ME data seriously restricts the development of cutting-edge data-driven MER models. Despite the recent efforts of several spontaneous ME datasets to alleviate this problem, it is still a tiny amount of work. To solve the problem of ME data hunger, we construct a dynamic spontaneous ME dataset with the largest current ME data scale, called DFME (Dynamic Facial Micro-expressions), which includes 7,526 well-labeled ME videos induced by 671 participants and annotated by more than 20 annotators throughout three years. Afterwards, we adopt four classical spatiotemporal feature learning models on DFME to perform MER experiments to objectively verify the validity of DFME dataset. In addition, we explore different solutions to the class imbalance and key-frame sequence sampling problems in dynamic MER respectively on DFME, so as to provide a valuable reference for future research. The comprehensive experimental results show that our DFME dataset can facilitate the research of automatic MER, and provide a new benchmark for MER. DFME will be published via https://mea-lab-421.github.io.
translated by 谷歌翻译